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Electrical transport in graphene offers a fascinating parallel to spin transport in semiconductors including the
spin-Hall effect. In the weak momentum scattering regime the steady-state density matrix contains two con-
tributions: one is linear in the carrier number density n and characteristic scattering time �, and the other is
independent of either. In this paper we take the Liouville equation as our starting point and demonstrate that
these two contributions can be identified with pseudospin conservation and nonconservation, respectively, and
are connected in a nontrivial manner by scattering processes. The scattering term has a distinct form, which is
peculiar to graphene and has important consequences in transport. The contribution linear in � is analogous to
the part of the spin-density matrix which yields a steady-state spin density, while the contribution independent
of � is analogous to the part of the spin-density matrix which yields a steady-state spin current. Unlike in
systems with spin-orbit interactions, the n- and �-independent part of the conductivity is reinforced in the weak
momentum scattering regime by scattering between the conserved and nonconserved pseudospin distributions.
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I. INTRODUCTION

The zero-gap semiconductor graphene, or two-dimen-
sional carbon, is a new material with a host of remarkable
physical properties that offers the possibility of all-carbon
devices. The last three years have seen a surge of experimen-
tal and theoretical interest in graphene following its realiza-
tion in the laboratory.1–3 High-mobility graphene samples are
nowadays reliably manufactured, and the recent experimen-
tal success in applying a top gate4 offers an increased handle
on material properties. Among the latest notable successes
the ability to suspend graphene experimentally5 is expected
to help determine the value of the dielectric constant � un-
ambiguously in this material.

The linear spectrum characterizing the band structure of
single-layer graphene is reminiscent of dispersion relations
in relativistic physics, and the charge carriers in this material
behave similar to massless Dirac particles. Graphene has a
honeycomb lattice with two atoms per unit cell, and the
Hamiltonian displays a coupling between electron and hole
states which gives rise to a degree of freedom that we refer to
as the pseudospin. It is these facts that underlie its unusual
features, which include the vanishing of the density of states
at the Dirac point, a contribution to the conductivity indepen-
dent of the carrier density n and scattering time �, a half-
integer quantum Hall effect, and the Klein paradox.1–3

Recent experimental work includes the fabrication of ep-
itaxial graphene or graphene-oxide junction,6 measurement
of ultrafast carrier dynamics,7 shot-noise measurements,8,9

determination of the performance limits of graphene de-
vices,10 observation of the Aharonov-Bohm effect,11 observa-
tion of the quantum Hall effect near the Dirac point,12 a
renormalization of the velocity due to electron-phonon inter-
action,13 and a thorough experimental study of epitaxial
graphene on SiC.14 Theoretical research on single-layer
graphene has concentrated on, among other matters, the ef-
fect of electron-electron interactions,15 on the question of
whether graphene is a Fermi liquid16 and on the importance

of localization around impurities.17 A number of theories
have dealt with scaling,18,19 impurity states,20 the odd-integer
quantum Hall effect,21 the fractional quantum Hall ef-
fect,22,23 polaritons,24 spin-orbit coupling,25 and sum rules for
the optical and Hall conductivities.26 In addition to these, a
large number of theoretical predictions include the quantum
spin-Hall effect,27 spin-Hall conductance fluctuations,28

proximity-induced superconductivity,29 antiferromagne-
tism,30 the spin-valve effect,31 peculiar focusing properties of
graphene p-n junctions,32 the use of graphene quantum dots
as spin qubits,33 Weiss oscillations,34 and a zero-bias anom-
aly in the tunneling density of states.35 Many other theories
have sought to increase theoretical understanding of graph-
ene.36–63 Beyond the single-layer form, graphene ribbons
have been predicted to have spin polarized edge states,64

while the band gap in bilayers has been shown to be tunable
by means of an electric field.65

In the following we shall refer frequently to the weak
momentum scattering regime characterized by �F�� /�,
where � is a characteristic momentum scattering time, and
the strong momentum scattering regime in which �F�� /�.
Furthermore, it is conventional in the literature to make the
distinction between intrinsic and extrinsic graphene. Intrinsic
graphene refers to the specific case in which the carrier dop-
ing density n is zero, and the Fermi energy lies at the Dirac
point, k=0. Intrinsic graphene is therefore by definition in
the strong momentum scattering regime. Extrinsic graphene
refers to the doped case and may be in either the weak or the
strong momentum scattering regime.

The presence of the additional degree of freedom con-
tained in the pseudospin causes the steady state for graphene
in an electric field to be qualitatively different from any other
known material. In particular, the presence of a contribution
to the conductivity independent of the carrier density re-
mains a puzzling observation. Such a contribution has been
measured experimentally,1–3 and we emphasize that it was
extracted from the experimental data by taking the doping
density to zero. The number obtained is naturally character-
istic of the strong momentum scattering regime. It is typi-
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cally referred to as the minimum conductivity of graphene.
At the same time, theoretical research on clean graphene �no
scattering� has found an additional contribution to the con-
ductivity independent of n and �.36–44 There appears to be
some agreement that coherence between electrons and holes
lies at the heart of this particular contribution to the conduc-
tivity. Since the Hamiltonian for carriers in graphene is
�v� ·k, where v is a constant and � represents the pseu-
dospin, the velocity operator is simply v�, and it is evident
that the pseudospin will play a crucial role in transport. Nev-
ertheless this contribution to the conductivity was found in
the ballistic regime, whereas the contribution referred to as
the minimum conductivity was measured experimentally in
the strong momentum scattering regime. We note that a se-
ries of enlightening papers have focused on Boltzmann
transport,45 on transport in the strong momentum scattering
limit,46,47 and on transport in extrinsic graphene.48,49 Our
work differs from these papers in that it recovers both the
ordinary �-dependent “Boltzmann” conductivity and the n-
and �-independent conductivity, and it demonstrates the pro-
found relationship that exists between the two. In addition,
our formalism does not require us to work in the limit n
→0 in order to recover the n- and �-independent conductiv-
ity.

In order to arrive at a tractable equation for the density
matrix it is necessary to assume that the Fermi energy �F
�� /�, which requires us to restrict our attention to the weak
momentum scattering regime. We assume low temperatures,
where scattering due to charged impurities is important and
may be dominant, and the fact that weakly doped graphene is
a Fermi liquid16 justifies omitting the effect of electron-
electron scattering. We believe that our approach sheds light
on the manner in which the part of the conductivity of
graphene that is independent of number density and � arises
and how it is related to the ordinary �-dependent �Boltz-
mann� conductivity. Indeed, the theory presented in this work
is tailored toward rendering explicit the important role of the
pseudospin in the dynamics of carriers in graphene, with a
focus on steady-state processes, providing an accurate and at
the same time transparent approach. We wish to emphasize
that, although we determine the numerical value of the con-
ductivity, our principal aim is not to obtain a number but
rather to bring to light the underlying structure of the steady-
state density matrix in pseudospin space. Compared to the
Boltzmann picture, our formalism has coherence between
electrons and holes built in from the start and thus provides a
clear physical picture. Nevertheless weak localization
effects46,47 are not taken into account in this work, as they
are not expected to be important in the weak momentum
scattering regime.

We find the most important observation to be the fact that
the carrier pseudospin is not conserved because of the
electron-hole coherence present in the Hamiltonian �includ-
ing coherence induced by the electric field�. In the absence of
intervalley scattering, assumed in our work, a pseudospin
eigenstate is an electron or a hole; thus, pseudospin noncon-
servation means a continually changing combination of an
electron and a hole. Therefore each carrier can be thought of
as a part which is either an electron or a hole and a part
which is a continually changing mixture of an electron and a

hole. With this in mind, it makes sense to divide the pseu-
dospin density matrix into two linearly independent contri-
butions, corresponding to conserved pseudospin �the carrier
is an electron or a hole� and nonconserved precessing pseu-
dospin �the carrier is a continually changing mixture of an
electron and a hole�. We show in a systematic fashion that
the two contributions to the conductivity of single-layer
graphene are related to these linearly independent compo-
nents of the pseudospin density matrix. The �-dependent
contribution is a result of pseudospin conservation, while the
n- and �-independent conductivity stems from pseudospin
nonconservation. The two independent parts of the density
matrix, often referred to as the dissipative and reactive parts,
which are responsible for the two terms in the conductivity,
are connected in a nonintuitive way by scattering events. We
find that scattering gives rise to a term in the Liouville equa-
tion which is peculiar to graphene and distinct from the usual
scattering term in other conductors. In particular, even an
infinitesimal amount of scattering produces a contribution to
zeroth order in the scattering potential which reinforces the
n- and �-independent contribution to the conductivity com-
ing from the band structure. This feature is one of the many
intriguing analogies which exist between transport in single-
layer graphene and the generation of steady-state spin densi-
ties and currents, including the spin-Hall effect, in ordinary
semiconductors.66–68 From a different perspective, the two
independent parts of the density matrix are intimately related
with the phenomenon of Zitterbewegung which refers to a
highly oscillatory component in the motion of relativistic
particles.69 Quite generally, such an oscillatory component is
always observed when the electron states in two or more
neighboring bands interfere.70 Of course, such an interfer-
ence also lies at the heart of �pseudo�spin precession so that
the unique transport properties of graphene can be consid-
ered as a manifestation of Zitterbewegung in a solid-state
system.43

The outline of this paper is as follows. In Sec. II we
derive a kinetic equation for the density matrix specific to
graphene, taking the quantum Liouville equation as our start-
ing point and focusing on the form of the scattering term,
which is different in graphene from that in other materials
even in the first Born approximation. Following that, in Sec.
III we consider the dynamics of the pseudospin. We divide
the pseudospin density matrix into a part representing con-
served pseudospin and a part representing nonconserved
pseudospin, and demonstrate the way scattering affects both
of these parts and connects one to the other. In Sec. IV we
determine the steady-state solution in the presence of an
electric field and the electrical conductivity. We show that
the ordinary �-dependent conductivity can be traced to the
conserved pseudospin distribution, while the number density
and �-independent conductivity is associated with the non-
conserved pseudospin distribution. These arguments are fur-
ther developed in Sec. V. We illustrate in Sec. VI the remark-
able similarities between charge transport in graphene and
spin transport in semiconductors with strong spin-orbit inter-
actions, including the way the vertex correction to spin cur-
rents in semiconductors has an analog in graphene that
reinforces the n- and �-independent conductivity in the weak
momentum scattering regime. We conclude with a brief sum-
mary in Sec. VII.
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II. TIME EVOLUTION OF THE DENSITY MATRIX

The system is described by a density operator �̂ which
obeys the quantum Liouville equation

d�̂

dt
+

i

�
�Ĥ + ĤE + Û, �̂� = 0, �1�

where Ĥ is the band Hamiltonian, ĤE represents the interac-

tion with external fields, and Û is the impurity potential. We
project the Liouville equation onto a set of time-independent
states of definite wave vector ��ks�� that are not assumed to

be eigenstates of Ĥ. The matrix elements of �̂ in this basis

are written as �kk�	�kk�
ss� = 
ks��̂�k�s��, with corresponding

notations for the matrix elements of Ĥ, ĤE, and Û; thus �kk�,
Hkk�, Hkk�

E , and Ukk� are 2	2 matrices in the space spanned
by the pseudospin s. We refer to �kk� as the �pseudospin�
density matrix. Matrix elements of the band Hamiltonian
Hkk�=Hk
kk� and Hkk�

E =Hk
E
kk� are diagonal in k but contain

off-diagonal terms in the pseudospin indices. Matrix ele-
ments of the scattering potential Ukk� are off diagonal in k.
�Matrix elements of the form Ukk lead to a redefinition of
Hk.� We assume elastic scattering and work in the first Born

approximation, in which Ukk�
ss� =Ukk�
ss�. Impurities are as-

sumed to be uncorrelated, and the normalization is such that

the configurational average of 
ks�Û�k�s��
k�s��Û�ks� is
�ni�Ukk��

2
ss�� /V, where ni is the impurity density, V is the
crystal volume, and Ukk� the matrix element of the potential
of a single impurity.

�kk� is divided into a part diagonal in k and a part off
diagonal in k, given by �kk�= fk
kk�+gkk�, where in gkk�, it is
understood that k�k�. We will be interested primarily in fk
since most operators related with steady-state processes are
diagonal in k. The quantum Liouville equation is broken
down into

dfk

dt
+

i

�
�Hk, fk� = − Hk

E −
i

�
�Û, ĝ�kk, �2a�

dgkk�

dt
+

i

�
�Ĥ, ĝ�kk� = −

i

�
�Û, f̂ + ĝ�kk�. �2b�

The solution to Eq. �2� to the first order in Û can be written
as

gkk� = −
i

�
��

0

�

dt�e−iĤt�/��Û, f̂�t − t���eiĤt�/��kk�. �3�

The assumption that �F� /��1 allows us to expand f̂�t− t��
around t and retain only f̂�t�. �Additional terms are of higher

order in Û.� The equation for fk is

dfk

dt
+

i

�
�Hk, fk� + Ĵ�fk� = − Hk

E, �4a�

Ĵ�fk� =
1

�2�
0

�

dt��Û,e−iĤt�/��Û, f̂�t��eiĤt�/��kk. �4b�

The integral in Eq. �4� is performed by inserting a regulariz-
ing factor e−�t� and letting �→0 in the end. For potentials
�Ukk��1 that are scalars in pseudospin space, this integral
has the form

Ĵ�fk� =
ni

�2 lim
�→0

� d2k�

�2��2 �Ukk��
2�

0

�

dt�e−�t�

	�e−iHk�t�/��fk − fk��e
iHkt�/� + e−iHkt�/��fk − fk��e

iHk�t�/�� .

�5�

Equation �3� is a generalization of Fermi’s golden rule, or
equivalently, a generalization of the first Born approximation
to systems, where the orbital motion is coupled with a �pseu-
do�spin degree of freedom.66,71,72

III. PSEUDOSPIN DYNAMICS

In the following we derive a scattering term specific to
graphene and an equation describing the time evolution of
the pseudospin. The band Hamiltonian for the carriers in
each valley in single-layer graphene at low doping densities
is given by Hk=�v� ·k, where the constant v is the Fermi
velocity and � is the �two-dimensional� vector of Pauli ma-
trices in pseudospin space. We emphasize that the Hamil-
tonian does not depend on the true spin of particles; thus the
final result will contain a factor of 2 from the sum over the
spin. An additional factor of 2 must account for the valley
degeneracy. Consequently final results are multiplied by an
overall factor of 4.

The Hamiltonian Hk is formally similar to the spin-orbit
interaction in spin-1/2 electron systems,73 except that the
spin-orbit interaction is usually accompanied by a kinetic-
energy term quadratic in k, which is typically much larger
than it, and has no analog in graphene. We wish to consider
briefly this aspect of Hk from the point of view of symmetry.
The Hamiltonian Hk transforms as a dipole in pseudospin
space,74 unlike the Hamiltonians of spin-1/2 electron sys-
tems, which contain both a dipole �the spin-orbit interaction�
and a monopole �the scalar kinetic energy�. In the absence of
scattering the equations of motion for the monopole and the
dipole are decoupled,74 but when scattering is present the
time evolution operator in the scattering term �5� in general
mixes the monopole and the dipole. In graphene the mono-
pole of the density matrix is equivalent to the scalar part and
the dipole is equivalent to the pseudospin part. Interestingly,
because the Hamiltonian for graphene only contains the di-
pole term, scattering cannot mix the scalar and pseudospin
parts of the density matrix. We will see in Sec. III A how
these symmetry arguments become relevant.
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A. Scattering term

Next we will evaluate the scattering term �5�. For this
purpose, the density matrix of graphene is written as
fk=nk+Sk	nk1+ 1

2Sk ·� with a scalar part nk and pseudospin
part Sk. We substitute Hk in the time evolution operator in
Eq. �5� and carry out the time integration. In this way we

obtain expressions for the action of Ĵ on nk and Sk, and we
find that, as discussed above, this term does not mix nk and

Sk. The explicit expression for Ĵ�nk� is not needed in this
work and will not be given. The action of the scattering term
on Sk is

Ĵ�Sk� =
kni

8��v
�

k�=k

d���Ukk��
2�Sk − Sk��

	���1 − cos �� + �� · k̂�k̂� + k̂�� · k̂��� . �6�

In the above �� is the polar angle for the direction of k� and
�=��−� is the angle between k� and k. We see in Eq. �6�
that the scattering term is qualitatively different from the
scattering term in spin-1/2 electron systems,71 both in its
angular dependence and in not mixing the scalar and pseu-
dospin parts of the density matrix. Aside from the Born ap-
proximation, no further approximations were made in deriv-
ing Eq. �6�. Yet we emphasize that it is essential for this
theory to assume weak momentum scattering since there is
no equivalent of the scalar kinetic-energy term present in
semiconductors with spin-orbit interactions, and in order to
derive Eq. �4� one must assume �F� /�=vkF��1. The prob-
lem is characterized by two time scales, the pseudospin pre-
cession frequency �F /�=vkF and �, and in assuming
vkF��1 we were able to truncate the scattering term at the
leading order in the impurity potential.

B. Time evolution of the pseudospin

We consider in more detail the equation for the pseu-
dospin part of the density matrix Sk in the general case in
which a nonzero source term exists on the right-hand side.
Such a source term will be present when an external field is
acting on the system, and its form can be derived straightfor-
wardly from the quantum Liouville equation. The specific
case of an electric field will be discussed in Sec. IV. The
kinetic equation for Sk in the presence of a source �k is

dSk

dt
+

i

�
�Hk,Sk� + Ĵ�Sk� = �k. �7�

The structure of this equation is very important. In order to
bring it out we decompose Sk into two linearly independent
parts, Sk=Sk� +Sk�. Sk� is, in matrix language, parallel to the
Hamiltonian Hk, while the remainder Sk� is orthogonal to
Hk. Because �Hk ,Sk��=0 the parallel part Sk� does not change
in time under the action of the time evolution operator eiHkt/�.
In other words Sk� represents the fraction of the pseudospin
which is conserved, that is, carriers which are either elec-
trons or holes. Conversely, Sk� represents the fraction of the
pseudospin which is not conserved, i.e., it is precessing. This
fraction corresponds to carriers which are a continually
changing mixture of electrons and holes. The decomposition

reflects the central importance of electron-hole coherence for
the carrier dynamics in graphene. We remark that the decom-
position is fully equivalent to the decomposition of carrier
dynamics in relativistic quantum mechanics which contains a
smooth part and an oscillatory part known as Zitter-
bewegung.69,70 In that sense the physics discussed here rep-
resents a direct manifestation of Zitterbewegung in
graphene.43

Specifically, the following equations hold for Sk� and Sk�:

Sk� =  tr�SkHk�
tr�Hk

2� �Hk, �8a�

�Sk�,Hk� = 0, �8b�

tr�Sk�Hk� = 0, �8c�

where the symbol tr refers to a trace over the pseudospin
indices only. It is easily seen that

Sk� =
1

2
�Sk · k̂��� · k̂� 	

1

2
sk��k� , �9a�

Sk� =
1

2
�Sk · �̂��� · �̂� 	

1

2
sk��k�, �9b�

where k̂ and �̂ are unit vectors along the direction of k and
perpendicular to k, respectively. We note that any matrix in
pseudospin space can be decomposed as in Eq. �9�. There-
fore, in analogy with this decomposition of the pseudospin
part of the density matrix, we also decompose the source
term �k along the same principles. From Eq. �7� we can
immediately see that the equations describing the time evo-
lution of Sk� and Sk� are

dSk�

dt
+ P�Ĵ�Sk� = �k� , �10a�

dSk�

dt
+

i

�
�Hk,Sk�� + P�Ĵ�Sk� = �k�, �10b�

where P�/�Ĵ�Sk� indicates that the scattering term acts on
Sk=Sk� +Sk� and the resulting expression is projected parallel
or perpendicular to the Hamiltonian.

A solution for Sk can be found most straightforwardly by
expanding Sk� and Sk� in the transition rate �Ukk��

2, in a
manner analogous to that adopted in determining the steady
states of spin distributions in systems with spin-orbit cou-
pling. We found66 that in steady-state problems the density
matrix always contains a correction � and is thus of order
−1 in the transition rate. This tells us that the expansion of Sk
needs to start at order −1. Since we are working in the weak
momentum scattering limit we truncate this expansion at the
next highest order, which is of order zero. The source term
�k does not have any dependence on the transition rate and is
thus of order zero. Equating terms of the same order in the
transition rate in Eq. �10� shows that the expansion of Sk�

must start at order −1, while the expansion of Sk� must start
at order zero. We denote the order −1 in the transition rate by
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a superscript �−1� with the corresponding notation for order
zero. As a result Eq. �10�, in the weak momentum scattering
limit, simplifies to

P�Ĵ�Sk�
�−1�� = �k� , �11a�

dSk�
�0�

dt
+

i

�
�Hk,Sk�

�0� � = �k� − P�Ĵ�Sk�� , �11b�

P�Ĵ�Sk�
�0�� = − P�Ĵ�Sk�

�0� � . �11c�

In Eq. �11a� we have omitted the time derivative of Sk� for
the following reason. In both equations we are looking for
the steady-state solution, and the equation for Sk� is most
easily solved without the time derivative. The equation for
Sk� is most easily solved with the time derivative explicitly
taken into account, but the time dependence drops out in the
end.

Equation �11� shows that if the solution is required only to
order zero in the transition rate, the scattering term acts only
on Sk�, which is the part of the density matrix parallel to the
Hamiltonian. Physically, the fact that Sk� starts at a lower
order in the transition rate than Sk� means that scattering
processes are more effective at randomizing the pseudospin
than at scattering into pseudospin eigenstates.

Finally, we can simplify the scattering term by projecting
Eq. �6� onto and perpendicular to the Hamiltonian Hk. The
projections that we will require in this work are

P�Ĵ�Sk�� =
kni

8��v
� d���Ukk��

2�sk� − sk�� ��1 + cos ���k� ,

�12a�

P�Ĵ�Sk�� =
kni

8��v
� d���Ukk��

2�sk� − sk�� �sin ��k�,

�12b�

P�Ĵ�Sk�� =
kni

8��v
� d���Ukk��

2�sk� + sk���sin ��k� .

�12c�

We proceed to determine the concrete form of Ĵ�Sk�� for a
screened Coulomb potential. The effect of screening in
graphene was evaluated by Ando75 among others, who
showed that kTFkF, where kTF is the Thomas-Fermi wave
vector. The explicit expression kTF will not be reproduced
here, it suffices to bear in mind that the ratio kTF /kF is a
constant. In two dimensions, the square of the matrix ele-
ment Ukk� of a screened Coulomb potential between plane
waves is

�Ukk��
2 =

Z2e4

�0
2V2D

2

1

4k2 sin2�

2
+ 1/Ls

2

, �13a�

	
W

sin2��/2� + kTF
2 /kF

2 , �13b�

where Z=1 is the ionic charge and Ls=kF / �2kTFk� is the
screening length. Substituting this into Eq. �12a� we obtain

P�Ĵ�Sk�� =
kniW

4�2�v
� d�������sk� − sk�� ��k� , �14a�

���� =
cos2��/2�

sin2��/2� + kTF
2 /kF

2 , �14b�

with similar results for P�Ĵ�Sk��. In order to evaluate this
expression we expand ���� in a Fourier series as
����=�m�meim� and remark that �−m=�m. In a similar way we
expand sk� as sk� =�msk�meim�. This gives for Eqs. �13a� and
�13b�

P�Ĵ�Sk�� =
kniW

2�2v
�k��

m

��0 − �m�sk�meim�. �15�

This is the furthest this equation can be simplified at this
stage. We will see below that in the steady state additional
simplifications emerge.

IV. STEADY-STATE SOLUTION

In the following, we assume low fields E and look for a
solution to first order in E. As shown in Appendix A in the
presence of an electric field E the source term �k in Eq. �7�
takes the form

�k =
eE

�
·
�S0

�k
. �16�

Here S0 is the pseudospin part of the equilibrium density
matrix, i.e.,

S0 =
1

2
�f0+ − f0−��k� , �17�

where the scalars f0�= f0���vk�, with f0 as the Fermi-Dirac
distribution and ��vk as the eigenenergies of the graphene
Hamiltonian Hk; thus

f0� =
1

e����vk−�� + 1
, �18�

where � is the chemical potential. The conserved and non-
conserved components of the source term are

�k� =
eE · k̂

2�
� � f0+

�k
−

� f0−

�k
��k� , �19a�

�k� =
eE · �̂

2�k
�f0+ − f0−��k�. �19b�

A. Sk¸ to leading order in scattering

Using Eqs. �11a� and �15� we can write down the equation
for Sk�

�−1� and equate the coefficients of �k�, reducing it to an
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equation for sk�
�−1�. It is important to note from Eq. �19a� that

the coefficient of �k� contains only the Fourier components
m= �1, and therefore the sum in Eq. �15� will only contain
�1 �besides �0�. This means that we have for sk�

�−1�

sk�
�−1�

�
=

eE · k̂

2�
� � f0+

�k
−

� f0−

�k
� . �20�

Here the scattering time � is given by

1

�
=

kniW

2�2v
��0 − �1� , �21a�

where the term in parenthesis can be expressed as

�0 − �1 = ��1 +
kTF

2

kF
2 −

kTF

kF
�2

. �21b�

Using Eq. �9a� this gives us Sk� as

Sk�
�−1� =

�eE · k̂

4�
� � f0+

�k
−

� f0−

�k
��k� . �22�

B. Sk� to leading order in scattering

We proceed to determine Sk�
�0� . For this purpose we require

the term P�Ĵ�Sk�
�−1�� in Eq. �11b�. Inserting Eq. �22� into Eq.

�12b� gives

P�Ĵ�Sk�
�−1�� = −

eE · �̂

2�

�0

�0 − �1
� � f0+

�k
−

� f0−

�k
��k�, �23�

where the angular integral �0 is given by

�0 =
1

2�
� d��

sin2�

2
cos2�

2

sin2�

2
+

kTF
2

kF
2

=
1

2
��1 +

kTF
2

kF
2 −

kTF

kF
�2

�24�

so that �0 / ��0−�1�=1 /2 and Eq. �23� is indeed independent
of the screening length. Now Eq. �11b� for Sk�

�0� becomes

dSk�
�0�

dt
+

i

�
�Hk,Sk�

�0� � =
eE · �̂��k�

2�
�k�, �25a�

in which we have abbreviated the quantity

��k� =
1

k
�f0+ − f0−� +

1

2
� � f0+

�k
−

� f0−

�k
� . �25b�

The solution of this equation is found most easily using the
time evolution operator eiHkt/�, and we allow the electric field
to have a small but finite frequency �, taking the limit
�→0 at the end,

Sk�
�0� =

eE · �̂��k�
2�

lim
�,�→0

1

2i�2vk − � − i��
�k�. �26�

As discussed above, unlike Sk� given by Eq. �22�, the perpen-
dicular part Sk� of the spin-density matrix is independent of
the transition rate �Ukk��

2.

C. Sk¸ to zeroth order in scattering

Finally, Sk�
�0� is found from Eq. �11c�,

P�Ĵ�Sk�
�0�� = − P�Ĵ�Sk�

�0� � . �27�

Since Sk�
�0� is known, we need to take the expression for Sk�

�0� ,
act on it with the scattering operator, and project the resulting
expression parallel to H. This will then become the source
term for Sk�

�0�. The details of this process are given in Appen-
dix B. The result is

Sk�
�0� =

eE · k̂��k�
2�

lim
�,�→0

1

2i�2vk − � − i��
�k� . �28�

This term is very similar to Sk�
�0� and their averages over

directions in momentum space are the same.

D. Electrical conductivity

Using the velocity operator in single-layer graphene,
given by v=v�, we can finally determine the electrical cur-
rent. The current operator depends on the pseudospin, and
following our reasoning so far, is decomposed into a parallel
part ��� and a perpendicular part ���. The expectation value
of the current reads

jx = − e lim
�→0

� d2k

�2��2 �vxk�sk� + vxk�sk�� . �29�

We convert the current tensor into the conductivity tensor �
using Ohm’s law, j=�E. The tensor � is diagonal with
�xx=�yy and �xy =0. The contribution to the conductivity due
to Sk�

�−1� �per valley and spin� is

�xx
ord =

e2

4h
vkF� . �30�

�xx
ord behaves differently depending on the nature of

scatterers in the system.45 For long-range scatterers
�= �4�2�2vkF� / �niZ

2e4�, with Z as the atomic number and �
as the permittivity; thus �xx

ord �n /ni�. Short-range scatterers
give �= �2�2�2vkTF

2 � / �niZ
2e4kF�, but since in graphene

kTFkF as shown by Ando75 we still have the relationship
�xx

ord �n /ni�.
The contribution due to Sk�

�0� requires a careful evaluation
of lim�,�→0 �dkf0� / �2vk−�− i��. This is performed by re-
placing first 1 / �2vk−�− i�� by i�
�2vk−�� while keeping
��0, then evaluating the integral using the 
 function. �Oth-
erwise one can obtain a negative conductivity.� We get

�xx
0� = lim

�→0

�e2

8h
 1

1 + e���+��/2� −
1

1 + e���−��/2�� . �31�

Note that the limits �→0 and �=1 / �kBT�→� are not
equivalent. Results of a similar or identical magnitude have
been found before in the absence of disorder and for n=0
only.38–44 The contribution of Sk�

�0� to the conductivity is equal
to �per valley and spin� �xx

0� =�xx
0�. This result reflects the fact

that Sk�
�0� and Sk�

�0� have the same angular average in momen-
tum space. Remarkably this holds for a screened Coulomb
potential regardless of the screening length.
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V. DISCUSSION

We would like to dwell on the role of the pseudospin in
the electrical conductivity of graphene. In our analysis the
pseudospin density matrix Sk is quite generally decomposed
into a part Sk� representing conserved pseudospin �i.e., carri-
ers which are either electrons or holes� and a part Sk� repre-
senting nonconserved pseudospin �carriers which are a con-
tinually changing mixture of electrons and holes�.
Pseudospin nonconservation, which is crucial in determining
the scattering-independent contribution to the conductivity,
occurs in graphene due to the mixing of electron and hole
states contained in Hk �electron-hole coherence�. The steady
state in graphene therefore involves nonconservation of the
pseudospin due to the mixing of electron and hole states
present in the Hamiltonian. The derivation shown in Sec. IV
demonstrates that the conserved pseudospin distribution
gives rise to the fraction �xx

ord of the conductivity given by
Eq. �30�. �xx

ord corresponds to the ordinary electrical �Boltz-
mann� conductivity, which in the steady state is proportional
to the carrier number density n and the characteristic scatter-
ing time �. The nonconserved pseudospin distribution gives
rise to a second contribution to the electrical conductivity,
�xx

0�, which appears to be independent of the carrier number
density and scattering time. However, our analysis shows
that this is not the complete answer since scattering between
Sk� and Sk� produces an additional correction of order zero
in the scattering potential, �xx

0�, which reinforces �xx
0�. Scat-

tering from the nonconserved pseudospin distribution into
the conserved pseudospin distribution is represented by

P�Ĵ�Sk�� in Eq. �11c�. In that sense scattering between the
two distributions has a constructive effect, and we emphasize
that this reinforcement holds for screened Coulomb scatter-
ing, regardless of the screening length �that is, both short-
ranged and long-ranged impurity potentials.� Conversely, the
additional correction �xx

0�b, which depends on the number
density but not on the impurity density, is also a result of
scattering. We emphasize that this reinforcement of the n-
and �-independent contribution to the electrical conductivity
in graphene in the weak momentum scattering limit was not
found before and constitutes the main result of our work.
This work demonstrates the unity behind two situations
which until now appeared to be two different limits of the
problem of determining the electrical conductivity of
graphene. To date no approach has been put forward in
which the Boltzmann and n- and �-independent contributions
to the conductivity are treated on the same footing.

VI. COMPARISON WITH SYSTEMS WITH
SPIN-ORBIT INTERACTIONS

The derivation of the steady-state density matrix in
graphene presented in this work makes evident the many
parallels which exist between the establishment of electrical
currents in graphene and the establishment of steady-state
spin densities and spin currents in semiconductors with
strong spin-orbit interactions. In a recent paper66 we dis-
cussed the nature of the steady state in systems with spin-
orbit interactions and showed that it is very different from

the steady state established in usual charge systems. This
difference is due to the presence of spin precession as a
result of spin-orbit coupling. In the steady state in spin-orbit
systems the spin-density matrix is decomposed into a part
representing conserved �i.e., not precessing� spin and a part
representing precessing spin. The conserved spin distribution
is responsible for the establishment of a steady-state spin
density, which is proportional to the carrier number density
and the characteristic scattering time �. The precessing spin
distribution is responsible for steady-state spin currents,
which are independent of the scattering time, and in two
dimensions, appear to be independent of the number density.
Interestingly, the correction equivalent to Sk���

�0� vanishes in
spin-orbit systems. Our recent work66 demonstrated that scat-
tering from the conserved spin distribution into the precess-
ing spin distribution produces a correction to the precessing
spin distribution which in general acts to reduce spin cur-
rents, and in certain circumstances, causes the spin current to
be zero. In that sense scattering between the two distribu-
tions also has a destructive effect. Furthermore, our work
showed that this cancellation is due to the same physics that
produces the vertex correction to the spin conductivity in the
Green’s functions approaches.67

Interestingly, the reinforcement of �xx
0 in graphene hap-

pens in a way that is very similar to the vanishing of the spin
current mentioned above. In both cases the effect is caused

by the term P�Ĵ�Sk�
�0� � appearing in Eq. �11c�. Yet this term

makes contributions of different signs in the two systems. We
remark that Eq. �25� has been solved by applying the time
evolution operator. The product e−iHkt/��k�eiHkt/� is made up
of two terms which have different dependencies on the angle
of the wave vector k. The first term is proportional to �k�

and the second term is proportional to �Hk ,�k��. The elec-
trical current operator in graphene is isotropic so that only
the first term contributes to the conductivity in this material.
In contrast, the spin current operator is proportional to k.
Thus only the second term contributes to the spin current in
spin-orbit coupled systems. These results imply that the cor-
rection to the spin current is brought about the scattering out
of Sk� and into Sk�. On the other hand in graphene it is the
scattering out of Sk� and into Sk� that gives rise to the cor-
rection to electrical conductivity. From the discussion above
we expect this reinforcement to appear as a result of the
vertex correction to the charge conductivity in graphene if a
linear-response approach based on the Green’s functions is
used.

In the field of spin transport a simple and elegant argu-
ment has been formulated68 which explains why the spin
current is necessarily zero in certain systems. Briefly, the
spin current is proportional to the rate of change of one of
the spin components, which must be zero in the steady state.
A similar argument cannot be made for charge transport in
graphene, where the charge current is proportional to the
pseudospin and does not depend on the rate of change of any
quantity in the steady state. This is a reassuring observation:
if an analogous argument could be made it would imply that
the electrical conductivity of graphene vanishes identically,
and this is evidently not the case.

Finally, we would like to point out that in spin-1/2 elec-
tron systems with spin-orbit interactions, where the kinetic
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energy greatly exceeds the spin-orbit splitting, it is custom-
ary to treat the spin-orbit interaction as a perturbation. Yet it
is interesting to bear in mind that one expects results quali-
tatively similar to those in graphene for a Rashba-type
Hamiltonian with a very large spin-orbit constant.

VII. SUMMARY

We have examined closely the nature of the steady state
established in graphene in the presence of an electric field.
We have demonstrated that the steady state in this material
contains important qualitative differences from the steady
state in other known conductors. The principal reason behind
this difference is the existence of a pseudospin degree of
freedom, which is related to the coupling between electrons
and holes contained in the Hamiltonian. In the weak momen-
tum scattering regime there are two contributions to the elec-
trical conductivity in graphene: one is linear in the carrier
number density and scattering time and one is independent of
both. These contributions can be identified with pseudospin
conservation and nonconservation, respectively, and are con-
nected by scattering processes. Scattering between the non-
conserved and the conserved pseudospin distributions
doubles the contribution to the conductivity independent of n
and �. Moreover, the steady-state density matrix in graphene
displays remarkable similarities to the steady-state spin-
density matrix in systems with spin-orbit interactions. The
contribution linear in n and � has an analog in the part of the
spin-density matrix which yields a steady-state spin density,
while the contribution independent of n and � is analogous to
the part of the spin-density matrix which yields a steady-state
spin current. The reinforcement of the n- and �-independent
part of the conductivity is due to scattering between the con-
served and nonconserved pseudospin distributions. This scat-
tering also has an analogy in spin-1/2 electron systems with
spin-orbit interactions linear in k,67,68 except in those sys-
tems scattering between the conserved and nonconserved
spin distributions causes the spin-Hall current to vanish.
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APPENDIX A: STEADY-STATE EXPECTATION VALUES

Our aim is to derive a kinetic equation for the density
matrix in the presence of an electric field E. In order to
evaluate the electric-field-induced source term in the kinetic
equation, we start from the Liouville equation with the per-
turbing Hamiltonian HE=eE · r̂. The source term in the Liou-
ville equation is

�̂ = −
ieE

�
· �r̂, �̂0� , �A1�

where �̂0 is the density operator in equilibrium, that is, in the
absence of the external field. We are interested in the expec-

tation value of an operator Ô �in our case the electrical cur-
rent�, which is found by taking the trace of this operator with
the density matrix, and thus with the correction to the density
matrix due to the electric field. This correction evidently de-
pends on the source so that we consider first the trace of the

operator Ô with the source term due to the electric field. This
trace �denoted by Tr� is evaluated as follows:

Tr�Ô�̂� = −
ieE

�
·� ddr tr O�r��r,�0�r�� . �A2�

We express �0�r� in terms of its Fourier transform, using the
convention 
r �k�=e−ik·r, as

�0�r� =� ddk

�2��d� ddk�

�2��de−i�k−k��·r�0�k,k�� , �A3�

where d=2 for graphene. At this point we substitute the ex-
pression for the spatially inhomogeneous electric field and
focus on the part of the density matrix diagonal in wave
vector

Tr�Ô�̂� = tr � ddk

�2��dO�k�
eE

�
·
��0

�k
. �A4�

This tells us that the source term in the kinetic equation is
therefore �eE /�� · ���0 /�k�.

APPENDIX B: Sk¸ TO ZEROTH ORDER IN SCATTERING

We will discuss in this appendix the details of the contri-
bution Sk�

�0�, which is found from

P�Ĵ�Sk�
�0�� = − P�Ĵ�Sk�

�0� � . �B1�

As mentioned in the main text, Sk�
�0� is known. We act on it

with the scattering operator and project the resulting expres-
sion parallel to H, yielding

P�Ĵ�Sk�� =
kni��k�
8��v

lim
�,�→0

1

2i�2vk − � − i��

	
eE

2�
·� d���Ukk��

2��̂ + �̂��sin ��k� . �B2�

The term �̂ vanishes in the angular integration, while the
remaining term gives

P�Ĵ�Sk�� = −
eE · k̂��k�

2��
lim

�,�→0

1

2i�2vk − � − i��
�k� .

�B3�

This will then act as the source term for Sk�
�0�, and the equa-

tion is solved in the same way as in Sec. IV A,

Sk�
�0� =

eE · k̂��k�
2�

lim
�,�→0

1

2i�2vk − � − i��
�k� . �B4�
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